翻訳と辞書
Words near each other
・ Gaussian quantum Monte Carlo
・ Gaussian random field
・ Gaussian rational
・ Gaussian surface
・ Gaussian units
・ Gaussian year
・ Gaussig House
・ Gaussiran Glacier
・ Gausson
・ Gausson (physics)
・ Gauss–Boaga projection
・ Gauss–Bonnet gravity
・ Gauss–Bonnet theorem
・ Gauss–Codazzi equations
・ Gauss–Hermite quadrature
Gauss–Jacobi quadrature
・ Gauss–Kronrod quadrature formula
・ Gauss–Krüger coordinate system
・ Gauss–Kuzmin distribution
・ Gauss–Kuzmin–Wirsing operator
・ Gauss–Laguerre quadrature
・ Gauss–Legendre algorithm
・ Gauss–Legendre method
・ Gauss–Lucas theorem
・ Gauss–Manin connection
・ Gauss–Markov
・ Gauss–Markov process
・ Gauss–Markov theorem
・ Gauss–Newton algorithm
・ Gauss–Seidel method


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gauss–Jacobi quadrature : ウィキペディア英語版
Gauss–Jacobi quadrature
In numerical analysis, Gauss–Jacobi quadrature is a method of numerical quadrature based on Gaussian quadrature. Gauss–Jacobi quadrature can be used to approximate integrals of the form
: \int_^1 f(x) (1-x)^\alpha (1+x)^\beta \,\mathrmx
where ƒ is a smooth function on (1 ) and ''α'', ''β'' > −1. The interval (1 ) can be replaced by any other interval by a linear transformation. Thus, Gauss–Jacobi quadrature can be used to approximate integrals with singularities at the end points. Gauss–Legendre quadrature is a special case of Gauss–Jacobi quadrature with ''α'' = ''β'' = 0. Similarly, Chebyshev–Gauss quadrature arises when one takes ''α'' = ''β'' = ±½. More generally, the special case ''α'' = ''β'' turns Jacobi polynomials into Gegenbauer polynomials, in which case the technique is sometimes called Gauss–Gegenbauer quadrature.
Gauss–Jacobi quadrature uses ''ω''(''x'') = (1 − ''x'')''α'' (1 + ''x'')''β'' as the weight function. The corresponding sequence of orthogonal polynomials consist of Jacobi polynomials. Thus, the Gauss–Jacobi quadrature rule on ''n'' points has the form
: \int_^1 f(x) (1-x)^\alpha (1+x)^\beta \,\mathrmx \approx \lambda_1 f(x_1) + \lambda_2 f(x_2) + \cdots + \lambda_n f(x_n),
where ''x''1, …, ''x''''n'' are the roots of the Jacobi polynomial of degree ''n''. The weights ''λ''1, …, ''λ''''n'' are given by the formula
: \lambda_i = - \frac \frac \frac(x_i)},
where Γ denotes the Gamma function and ''P''''n'' the Jacobi polynomial of degree ''n''.
==References==

* .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gauss–Jacobi quadrature」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.